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ABSTRACT

We employ the H -function to obtain the formal solution of the partial differential equation:
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Related to a problem of heat conduction by making use of the integral and orthogonality property of Jacobi

polynomials. The result generalizes a number of known particular cases on specialization of the parameters.
(2000 Mathematics subject classification: 33c99)
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INTRODUCTION

The H -function occurring in the paper will be defined and represented by Buschman and Srivastava [1] as
follows:
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Which contains fractional powers of the gamma functions. Here, and throughout the paper aj(j =1...,p) and
b;(j=1..,Q)are complex parameters, «;>0(j=1,..,P),B;>20(j=1...,Q)(not all zero
simultaneously) and exponents A;(j=1,...,N) and B;(j =N +1,...,Q) can take on non integer values.

The following sufficient condition for the absolute convergence of the defining integral for the H -function given
by equation (1.1) have been given by (Buschman and Srivastava[1]).
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1
and |arg(z)| < E;rQ (1.4)

The behavior of the H -function for small values of |Z| follows easily from a result recently given by (Rathie

[5],p.306,eq.(6.9)).
We have

ﬁ’g,(’gN[z]:O(|z|y),;/irgigr&{Re(%_ﬂJd—>0 (1.5)

If we take Aj =1(j =1.., N), Bj Zl(j =M +1,...,Q) in (1.1), the function ﬁ:;/l,bN reduces to the Fox’s

H-function [3].
We shall use the following notation:

A =(aj’aj;Aj)l,N ’(aj’aj)N+1,Pand B’ =(bi’ﬁi)1,M ’(bi’ﬁj;Bj)

We require the following result:
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Where

b. .
Rele+h— |>-1i=12,.m
i
Q>O,|argz|<%Q7r,h >0,P<Q(Q+1land|d|<1),g>0.
Th eorthogonality property of the Jacobi polynomials:
1
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Where
Re(a) > —-1,Re(f) > —1and
2P (a4 r+)I(B+r+])
"ol a+ B+1+2nT(a+ B +1+7)

And O, is Kronecker delta function, defined as:
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HEAT CONDUCTION AND H -FUNCTION
Our problem is to find a function v(u,t) representing the tempreture in a non-homogeneous bar with ends at

U ==1lin which the thermal conductivity is proportional to (1—u2) and if the ateral surface of the bar is
insulated, it satisfies the partial differential equation of heat conduction
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Where A is a constant, provided the thermal coefficent is constant.

The boundaru conditions of the problem are that both ends of a bar at U =z1are also insulated because the
conductivity vanishes there, and the initial conditions:

v(u,0)=f(u), -1<u<l (2.2)

In view of (2.2), we consider

v=fu)=@1-u), Q{B d(]%jg}

h
—mn 1-u "
H {Z(Tj Q*}du (2.3)
We may therefore, assume the solution of (2.1) in the form
v(u,t) = Z Rwe—iw(w+1)t Pvéa,ﬂ) (u) (2.4)

w=0

When t =0in (2.4) and using (2.3), we have

e 1 —mpn 1-uY Ax
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=> R,P“"(u) ~1<u<1 (2.5)
w=0

Here P{*”)(u) is a Jacobi polynomial.

Equation (2.3) is valid since f (u) is continuous in the closed interval — < U <J1and has a piece-wise continuous
derivative there, then o > —1, .—1, the Jacobi series associated with f (u) converges uniformly to f (u) in
-1+ e<u<l-¢ O<e<l.

Now multiplying both sides of (2.5) by (1—u)*(1+u)” Pr(“‘ﬂ) (u); ¢ > -1, B> —1and integrating from —1
to 1, the use of (1.6) yields
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We freely apply (1.6) in (2.6) to obtain
()" 2" TA+a+ B+ (L+a+ B+2r)
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On substituting the value of R, from (2.7) in (2.4), we arrive at the desired solution.

0

v(u,t)=2° " f(wpe !
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Where

(W) = (D" "2° 1T+ a+ B+ W (A+a + f+2w) (Ay;c)d°
I'd+oa+w) (By;cC)e!

And the conditions of validity are:

Re(a) > 0,Re(f) >O,Q>0,|argz|<%§27r,h >0,P<Q(Q+1land|d|<1),g>0.

SPECIAL CASE
If we take AJ. =1(j =1..., N), Bj =1(j =M +1,...,Q), we get the result due to Chaurasia [3].
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